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Abstract

Accurate solutions to the equations governing the natural convection of air in a cubic cavity, thermally driven on
two vertically opposite faces, are given for Rayleigh number values up to 107. These solutions are obtained with a
pseudo-spectral Chebyshev algorithm based on the projection±di�usion method [1,2] with a spatial resolution
supplied by polynomial expansions, which go up to 111 � 111 � 111. The solutions are believed to be accurateÐ

better than (0.03, 0.05)% in relative global error for the corresponding Rayleigh number (Ra ) range (103, 107). This
clearly indicates a non monotonic evolution of the ¯ow structure as Ra increases. 7 2000 Elsevier Science Ltd. All
rights reserved.

1. Introduction

A good knowledge of the natural convection of air
in di�erentially heated enclosures is a valuable starting
point for testing and validating computer codes used

for a wide variety of practical problems, such as, cool-
ing of radioactive waste containers, ventilation of
rooms, solar energy collectors and crystal growth in

liquids. The best reference, in this respect, must come
from experiments that are speci®cally designed to

supply benchmark data, which is not an easy task

when dealing with adiabatic boundary conditions. A

recent experimental contribution [3] must be taken

note of, which concerns a cubic cavity even though the

non-active (or side) walls are perfectly conducting. On

the numerical side, in 1983, de Vahl Davis and Jones

[4,5] published a benchmark solution of the buoyancy-

driven ¯ow in a square cavity with di�erentially heated

vertical sides (the other ones being adiabatic) for a

Rayleigh number (Ra ) value lying in the range (103±

106), and having a Prandlt number (Pr ) ®xed at 0.71.

By resorting to a systematic grid re®nement practice

and concurrent use of the Richardson extrapolation to

obtain grid-independent data, these solutions were

claimed to be accurate to (0.1, 1)% in relative spatial

error for Ra (104, 106). In 1991, Le QueÂ reÂ [6] proposed

accurate numerical solutions, obtained with a pseudo-

spectral Chebyshev algorithm, for Ra values up to 108,
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which is very close to the transition into unsteadiness

(at Ra � �1:8220:01� � 108, [7]).

In the last two decades, three-dimensional ¯ow

calculations have been performed for the di�eren-

tially heated cavity (on two vertically opposite

faces) using improved algorithms and computing

resources [2,8±21]. All together, these papers refer

to several di�erent 3D con®gurations. In the one

considered here, the ¯uid is con®ned in the three

space directions and the non-active walls are adia-

batic. To the authors' knowledge, only the refer-

ences [2,10,12±14] supply characteristic values of the

stationary velocity ®elds and/or the Nusselt num-

bers, for values of the Ra lying in the range [103±

107]. It has been shown that the natural convection of

air in such a con®guration, becomes unsteady for a

value of Ra situated just beyond this range, and ex-

hibits hysteric behaviour for Ra 2 �3:2, 3:5� � 107 [2].

The purpose of this paper is to complete the two-

and three-dimensional ¯ow calculations database by

providing ®ve accurate solutions corresponding to

Ra � 103, 104, 105, 106 and 107, respectively. These sol-

utions come from a Chebyshev pseudo-spectral code.

A comparison of our data with those already pub-

lished is realised and a ®rst set of ``bench-mark three-

dimensional solutions'' is proposed. From a ®rst glance

at our results it can be deduced that the 3D ¯ow struc-

ture does not evolve monotonically in this Ra range.

The article is organized in sections which successively
present the mathematical and numerical formulation
of the natural convection ¯ow, the validation and ac-

curacy of our numerical 2D and 3D results, and the
benchmark tridimensional solutions with some com-
ments on the physics.

2. The Mathematical model and numerical method

Let DT be the imposed temperature di�erence
between the two vertical active walls, and T0 the mean
temperature of the ¯uid. We are concerned here with
the leading order in DT=T0 of the buoyant-induced

¯ow in the cavity, knowing that there are possible
departures of the second-order in experimental ¯ows
obtained at high values of the Rayleigh number. The

usual dimensionless Boussinesq equations are then:

@v

@ t
� �v:r�v � ÿrp� Prr 2v� Ra Pr Têz, �1�

r � v � 0, �2�

@T

@ t
� �v � r�T � r 2T, �3�

Nomenclature

d3D maximum nodal divergence in the cubic cav-
ity, scaled by the largest modulus of the vel-
ocity

d2D maximum nodal divergence, in the square cav-
ity scaled by the largest modulus of the vel-
ocity

dmp maximum of �@v=@y� in the cavity mid-plane
�y � 0), scaled by the largest modulus of the
velocity

êx unit vector in the horizontal direction
êy unit vector in the horizontal ``depth'' direction
êz unit vector in the upward vertical direction
Er relative error

H size of the square or cubic cavity
n̂ outward unit vector normal to the boundary

domain @O
N number of nodes in each space direction.
Nu Nusselt number
Pr Prandlt number

p dynamical pressure
Ra Rayleigh number
T temperature

t time
u velocity component along êx
v velocity ®eld

v velocity component along êy
w velocity component along êz
x coordinate along êx
y coordinate along êy
z coordinate along êz

Greek symbols
@O boundary of the closed domain
DT temperature di�erence imposed between the

two active vertical walls of the cavity

k thermal di�usivity
dt time step
g acceleration ®eld

Subscripts
mp mid-plane

max maximum of a quantity
2D bidimensional case
3D tridimensional case
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where the lengths, the velocity v, the temperature T are
scaled by H, the size of cube, k=H, the thermal di�u-

sion velocity and DT, respectively. The other scales
have been derived from these and Pr are ®xed at 0.71.
The geometrical con®guration is sketched in Fig. 1.

No-slip boundary conditions are imposed on all the
faces of the cube. The thermal conditions applied on
the active faces are T�x �2 1

2 , y, z� �3 1
2 , the other

faces being adiabatic: @T
@ n̂ � 0, at �x, y �2 1

2 , z� and
�x, y, z �2 1

2 ), where
@
@ n̂ is the appropriate normal de-

rivative. The 2D square con®guration corresponds to

the particular case of ¯ows which are invariant by
translation along the êy direction. It is often assumed
that the approximate cross-section of the 3D ¯ow is in
the mid-plane y � 0, which is invariant by re¯ection.

A Chebyshev Gauss±Lobatto method [22] has been
used to evaluate the ®elds' spatial derivatives and the
usual second-order Crank±Nicolson Adams±Bashforth

®nite di�erence scheme is called for time integration.
The di�usion terms have been implicitly treated and
the others ones explicitly. At each time step, the tem-

perature is ®rst updated to satisfy Eq. (3) and then one
has to solve the resulting Stokes problem,

@v

@ t
� rpÿ Pr r 2v � f � ÿ�v � r�v� Ra Pr Têz,

r � v � 0,

�4�

which can be equivalently written as �f � 0 tempor-

arily):

r 2p � 0,

�
@

@ t
ÿ Prr 2

�
r 2v � 0: �5�

It is well known that the numerical di�culty is to
uncouple the velocity and pressure ®elds. For the 3D

case, the cheapest approach in CPU time is to employ
fractional step or splitting techniques. However,
according to the analysis made in [23,24], this kind of

method is not consistent with the Stokes problem
(Eqs. (4) and (5)). Indeed, it amounts to get the set (v,
p ) as solution of�
a
@

@ t
ÿ r 2

�
r 2p � 0,

�
a
@

@ t
ÿ r 2

��
@

@ t
ÿ Pr r 2

�
r 2v � 0,

Fig. 1. Sketch of a physical model of the thermally driven cubic cavity.
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the constant a being related to time splitting. This
splitting introduces an additional space-time operator

on the physical ®elds, which is a modi®cation of the
Stokes problem in contradiction with the incompress-
ibility hypothesis. As shown in [24], the projection±dif-

fusion approach, recently proposed in [1,2], is consist-
ent with Eq. (5) and therefore recommended for
correctly capturing the threshold of the onset of

unsteadiness [2]. This latter method presents the same
CPU cost and has been chosen for this study. Its main
features are: unconditional stability [24] with the sec-

ond-order temporal schemes and it proceeds in two
steps. First, the pressure and an acceleration ®eld, g,
are evaluated from the Darcy system,

g� rp � f

g � n̂j@O � Pr�r � r � v� � n̂j@O,

r � g � 0,

where �r � r � v�:n̂j@O is explicitly evaluated with
time. To apply the incompressibility constraint
r � g � 0, on the boundaries, this boundary condition

is taken into account, instead of the corresponding
component of the ®rst equation. This ®eld is exactly

solenoõÈdal, and is in turn, the source of the di�usion
step,�
@

@ t
ÿ Pr � r 2

�
v � g,

vj@O � 0, �6�

and is easily solved by a standard successive diagonal-

ization technique [25,26]. This latter stage is a classical
(vectorial) heat equation problem. The numerical con-
vergence, with the nodes number of its solution, has

been analysed at the very beginning of the intensive
use of the spectral methods [22,27]. It is well known
that the leading part of the numerical error comes
from the truncation on the right-hand side of Eq. (6),

a truncation coming from taking the boundary con-
ditions into account. Hence, g is exactly solenoõÈ dal, but
it is truncated for solving Eq. (6), and the resulting sol-

ution v cannot be divergence free. Moreover, assuming
that the expected solution is regular, references [22]
and [27] tell us that the truncation, vanishes exponen-

Table 1

Comparison of our 2D air ¯ow results with the bench-mark data proposed by de Vahl Davis [5] for Ra � 103, 104 and 105

Ra = 103 Ra = 104 Ra = 105

Present work Ref. [5] Present work Ref. [5] Present work Ref. [5]

Grid 51� 51 Extrapolated 51� 51 Extrapolated 51� 51 Extrapolated

umax�0, z� 3.66 3.65 16.18 16.18 34.70 34.73

z 0.313 0.313 0.323 0.323 0.354 0.355

wmax�x, 0� 3.71 3.70 19.63 19.62 68.61 68.59

x ÿ0.321 ÿ0.322 ÿ0.381 ÿ0.382 ÿ0.434 ÿ0.434
Nu2D, W 1.116 1.117 2.245 2.238 4.522 4.509

Nu2D, 0 1.116 1.118 2.245 2.243 4.522 4.519

Divergence 0.00826 0.00071 0.00082

Table 2

Comparison of our 2D air ¯ow results with the bench-mark data proposed by Le QueÂ reÂ [6] for Ra � 106, 107 and 108

Ra = 106 Ra = 107 Ra = 108

Present work Ref. [6] Present work Ref. [6] Present work Ref. [6]

Grid 51� 51 73� 73 51� 51 81� 81 129� 129 129� 129

umax�0, z� 64.84 64.83 148.60 148.59 321.87 321.90

z 0.341 0.342 0.379 0.379 0.428 0.428

wmax�x, 0� 220.50 220.60 700.10 699.18 2222.38 2222.39

x ÿ0.462 ÿ0.462 ÿ0.479 ÿ0.479 ÿ0.488 ÿ0.488
Nu2D, W 8.825 8.825 16.522 16.523 30.225 30.225

Nu2D, 0 8.825 8.825 16.522 16.523 30.225 30.225

Divergence 0.0123 7� 10ÿ9 0.0833 1.2� 10ÿ8 0.0192 5� 10ÿ8
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tially with the nodes number and so does the resulting

r � v ®eld. This means that the obtained numerical

solution is the closest one can get to the physical one.

There is another way of admitting why the best nu-

merical solution is not a priori divergence free. Let us

assume that the analytical solution is known. Then,

the ®eld vN of its collocated values, on a N 3 grid is

exact, but has a non-zero numerical divergence, dN,

which vanishes asymptotically with N. If, by some nu-

merical method, its divergence is forced to cancel, the

nodal values of the new ®eld v 0N, will unavoidably

depart from their exact values, by an amount of the

order of kdvNkRkdNk=N 2, k � k stands for the order of

magnitude of the enclosed term. This will be later on

called for, to estimate the compatibility between nu-

merical velocity ®elds obtained with di�erent r � v
treatments. The e�ective convergence to zero of r � v,
with the mesh re®nement, is actually the best indi-

cation of the spectral quality of the numerical velocity

®eld. Nonetheless, there is no a priori estimate of the

acceptable value of r � v which ensures a given accu-

racy of the solution. Of course, the exponential

decrease is expected to saturate at some level because

of rounding-o� errors. The convergence of results of

the ``projection±di�usion'' solver, with the meshing,

has been measured with various situations of con®ned
¯uid ¯ows. These results compare quite well with those

obtained from a di�erent uncoupling approach, of the
Uzawa type. Reference [2] reports such a comparison
for the thermally driven 2D cavity. For both Stokes

solvers, the e�ective convergence of the numerical r � v
®eld to zero is non-monotonic, but bound by an expo-
nentially decreasing envelop, as the nodes, number

increases. A similar behaviour is reported here.

3. The numerical results

Convergence to steadiness is declared when the cri-

terion,

jfn ÿ fnÿ1j
jfnj

R10ÿ1 � dt

is satis®ed for all f, fn standing for the maximum ab-

solute value, found on the nodes at time ndt, for one
of the physical ®elds (the velocity components or tem-
perature). A more severe criterion, up to 10ÿ4 instead

of 10ÿ1, has been taken to obtain 3D results at
Ra � 106, with dt � 4� 10ÿ6 and a meshing of 813.
The numerical results depart by 0.03% from those

Table 3

Characteristic values, Ra � 103

Grid 513 613 713 813

umax 3.54356 3.54351 3.54353 3.54356

x 0.0166 0.0165 0.0166 0.0166

y 0:56� 10ÿ10 0:74� 10ÿ11 0:95� 10ÿ11 0:54� 10ÿ11

z 0.3169 0.3169 0.3169 0.3169

vmax 0.17332 0.17331 0.17331 0.17331

x 0:14� 10ÿ10 0:14� 10ÿ10 0:14� 10ÿ10 0:14� 10ÿ10

y 0.2521 0.2521 0.2521 0.2521

z 0:44� 10ÿ10 0:44� 10ÿ10 0:44� 10ÿ10 0:43� 10ÿ10

wmax 3.54477 3.54482 3.54467 3.54469

x 0.3233 0.3223 0.3223 0.3223

y 0:24� 10ÿ10 0:21� 10ÿ10 0:19� 10ÿ10 0:38� 10ÿ10

z 0:32� 10ÿ2 0:32� 10ÿ2 0:32� 10ÿ2 0:32� 10ÿ2

Ump, max 3.54356 3.54351 3.54353 3.54356

x 0.0166 0.0166 0.0166 0.0166

z 0.3169 0.3169 0.3169 0.3169

Wmp, max 3.54477 3.54482 3.54467 3.54477

x 0.3233 0.3233 0.3233 0.3233

z 0:32� 10ÿ2 0:32� 10ÿ2 0:32� 10ÿ2 0:32� 10ÿ2

Ump, max�0, 0, z� 3.53621 3.53873 3.53878 3.53875

z 0.3192 0.3151 0.3151 0.3151

Wmp, max�x, 0, 0� 3.54311 3.54162 3.54186 3.54185

x ÿ0.3187 ÿ0.3147 ÿ0.3147 ÿ0.3147
Nump 1.0874 1.0873 1.0873 1.0873

Nu3D, W 1.0700 1.0700 1.0700 1.0700

d3D 0:263� 10ÿ3 0:222� 10ÿ3 0:978� 10ÿ4 0:103� 10ÿ4

dmp 0.286 0.286 0.286 0.286
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obtained with the criterion 10ÿ1. This error has been

added to the one due to the spatial resolution (see

below).

All the maxima that will be presented for the vel-

ocity components have been obtained by using a sec-

ond-order Lagrangian interpolation, between three

adjacent nodal values in each space direction. In con-

trast, for the velocity divergence (scaled by the largest

modulus of the velocity), the maxima comes merely

from the nodal values of this ®eld. Owing to the cen-

tro- and re¯ection symmetry properties of these ¯ows

[2], the locations of all the quoted maxima have been

restricted to the �yr0, zr0� sub-domain of the cavity.

The dimensionless heat transfer rates at the cold iso-

thermal wall are represented by the Nusselt numbers,

de®ned as follows.

(a) The 3D local Nusselt Nulocal�x, z� � @T�y; z�
@x jx�1=2

(b) The vertically averaged Nusselt

Nu�y� � � 1=2ÿ1=2 Nulocal�y, z� dz
(c) The global 3D Nusselt number at the wall

Nu3D; W�
� 1=2
ÿ1=2 Nu�y� dy

(d) The mid-plane Nusselt number Nump � Nu�y �
0�:
(e) The global 2D Nusselt number at the wall is

Nu2D; W�
� 1=2
ÿ1=2

@T�z�
@x jx�1=2 dz

(f) The global 2D Nusselt number at x � 0,

Nu2D, 0 � � 1=2ÿ1=2 @T�z�@x jx�0 dz:

The derivations and integrations have been spectrally

computed.

2D and 3D calculations have been performed for

each chosen Ra, applying the following procedure.

For a given value of Ra, a steady solution has

been ®rst obtained on a coarser grid, starting either

from rest or from ¯ow corresponding to a smaller

Ra. This solution was then projected onto a ®ner

Gauss±Lobatto grid by a Lagrangian interpolant.

Time integration was then restarted, using this ex-

trapolated ¯ow as initial condition, and carried out

until the new steady-state was achieved. The process

was repeated until the solution was obtained on the

®nest grid.

All the 2D ¯ows mentioned in this subsection

have been obtained with a 512 grid and

dt � 4� 10ÿ5, except for Ra � 108 for which the grid

has been re®ned up to 1292 �dt � 4� 10ÿ6). Systematic

comparisons have been made for the 2D case, with the

benchmark data proposed by [5,6], for Ra = 103±105

and Ra = 106±108, respectively. These data and ours

are gathered in Tables 1 and 2, where the maxima (on

the square cavity) and their location of (a) the horizon-

Table 4

Characteristic values, Ra � 104

Grid 513 613 713 813

umax 16.71828 16.72060 16.71955 16.71986

x 0.0196 0.0196 0.0196 0.0196

y 0:323� 10ÿ10 0:731� 10ÿ10 0:181� 10ÿ10 0:120� 10ÿ10

z 0.3250 0.3250 0.3250 0.3250

vmax 2.15622 2.15767 2.15661 2.15657

x 0.3823 0.3823 0.3823 0.3823

y 0.2826 0.2826 0.2826 0.2826

z 0.3447 0.3447 0.3447 0.3447

Wmax 18.98182 18.98266 18.98359 18.98359

x 0.2308 0.2308 0.2308 0.2308

z 0.0206 0.0206 0.0206 0.0206

ump, max 16.71828 16.72060 16.71965 16.71986

x 0.0196 0.0196 0.0196 0.0196

z 0.3250 0.3250 0.3250 0.3250

Wmp, max 18.68140 18.68290 18.68266 18.68247

x 0.3870 0.3870 0.3870 0.3870

z 0.0219 0.0219 0.0219 0.0219

ump, max�0, 0, z� 16.70562 16.66930 16.72155 16.72128

z 0.3185 0.3346 0.3248 0.3244

Wmp, max�x, 0, 0� 18.62812 18.61046 18.61681 18.61615

x ÿ0.3853 ÿ0.3886 ÿ0.3809 ÿ0.3802
Nmp 2.2505 0.2505 2.2505 2.2505

N3D, W 2.0542 2.0542 2.0542 2.0542

d3D 0:718� 10ÿ3 0:524� 10ÿ3 0:490� 10ÿ3 0:280� 10ÿ3

dmp 0.541 0.541 0.541 0.541
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tal velocity component at x � 0, (b) the vertical vel-
ocity component, at z � 0 and (c) the Nusselt numbers

Nu2D, 0 and Nu2D, W are presented. An excellent agree-
ment is observed between the sets of data, except for
the numerical values of r � v with respect to the data

from [6]. This is clearly due to the di�erent choices
made for uncoupling the velocity and pressure ®elds in
the Stokes stage. In [6], the velocity ®eld is forced to

be exactly solenoõÈ dal. This allows to con®rm the com-
ments made in Section 2. In particular, the expected
order of magnitude of the relative di�erence between

the two quoted values for wmax�x, 0� is kdvNkkvNk R kdNk
kvNk � 1

N 2 :
Since the divergence quoted in the tables of this paper
is kdNk=kvNk, it is easy to estimate the compatibility
between the present results and those of [6]. The maxi-

mum one can expect for the order of the magnitude of
kdvNk, with grid 1292, is thus 0.035, in good agreement
with kdvNk10:01 coming from Table 2. Having in

mind the computational cost of the 3D ¯ows, and the
extremely expensive methods (Uzawa or in¯uence
matrix) to get an exactly satis®ed r � v � 0 constraint,

one can point out the great advantage that a method,
such as the ``projection-di�usion'', which o�ers to
supply spectrally accurate ¯ows, at the price of four

direct Helmholtz solvers [23,24].

3D calculations have been performed at ®ve Ray-
leigh number values (103, 104, 105, 106 and 107) of

which the respective results are reported in Tables 3±7.
For each of these values, a 3D ¯ow has been obtained
with four di�erent meshings (513, 613, 713 and 813).

The particular case of Ra � 107 has been computed
with a meshing going up to 1113. To characterise the
spatial convergence of these di�erent steady ¯ows,

each table contains the following quantities: (a) the
maximum of each velocity component in the cavity,
with its location; (b) the maximum of the u and w

components (v cancels there) in the mid-plane �y � 0�,
with their locations; (c) the maximum of the u com-
ponent at x � 0 and w component at z � 0 in the mid-
plane �y � 0�, and their locations; (d) the Nusselt num-

bers Nu3D, W and Nump; and (e) d3D, dmp: All these
tables show that the position of the quoted velocity
extrema are accurately determined for all the chosen

grids. The numerical values of the velocity components
and of d3D present a good convergence, which is
assessed below.

The Ra � 106 and 107 ¯ows have indeed been
obtained with other intermediate grids, in order to get
a clean measurement of the convergence rates of the

data with the number of nodes. Table 8 refers to the

Table 5

Characteristic values, Ra � 105

Grid 513 613 713 813

umax 43.9089 43.9039 43.9012 43.9037

x ÿ0.1841 ÿ0.1841 ÿ0.1841 ÿ0.1841
y 0.2203 0.2203 0.2203 0.2203

z 0.3873 0.3873 0.3873 0.3873

vmax 9.7004 9.6998 9.6970 9.6973

x 0.4175 0.4175 0.4175 0.4175

y 0.3390 0.3390 0.3390 0.3390

z 0.3801 0.3801 0.3801 0.3801

Wmax 71.1053 71.0611 71.0599 71.0680

x 0.4305 0.4304 0.4304 0.4304

y 0.3736 0.3736 0.3736 0.3736

z 0:623� 10ÿ2 0:603� 10ÿ2 0:604� 10ÿ2 0:604� 10ÿ2

ump, max 43.0630 43.0673 43.0549 43.0610

x ÿ0.1864 ÿ0.1865 ÿ0.1865 ÿ0.1865
z 0.3848 0.3848 0.3848 0.3848

Wmp, max 65.4395 65.4404 65.4313 65.4362

x 0.4368 0.4368 0.4368 0.4368

z 0.0100 0.0100 0.0100 0.0100

ump, max�0, 0, z� 37.3998 37.5545 37.5683 37.5612

z 0.3425 0.3535 0.3535 0.3535

Wmp, max�x, 0, 0� 65.3572 65.3105 65.2157 65.2113

x ÿ0.4382 ÿ0.4330 ÿ0.4330 ÿ0.4330
Nmp 4.6133 4.6131 4.6127 4.6127

N3D, W 4.3375 4.3373 4.3371 4.3370

d3D 0:390� 10ÿ2 0:196� 10ÿ2 0:130� 10ÿ2 0:112� 10ÿ2

dmp 0.421 0.421 0.421 0.421
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107 case only, to show how the maxima of the velocity
components and d3D converge with the grid re®nement.
As the number of nodes increase, each quantity con-

verges towards a given value (zero, in particular, for
the divergence). The exponential decrease of the rela-
tive divergence, as a function of N 3, shown in Fig. 2a

and b, for Ra � 106 and 107, respectively, is not quite
monotonic but nevertheless con®rms the spectral
improvement of the data. In order to estimate this
improvement and the error associated with the spatial

resolution, for each maxima of the velocity com-
ponents given in Table 8, as well as for the Ra � 106

case, we have calculated the quantity

Er
ÿ
fN1

�
� jf

N1
max ÿ fN1

maxj
jfN1

maxj
, N2 � N1 � 6 �or 4

alternatively�

where fNi

max stands for the absolute maximum of one of
the velocity components, obtained with the N 3

i grid.
Here also, the evolution of these relative errors (Fig. 2a

and b) as a function of N 3 is non-monotonic, but
bounded by a decreasing exponential-like envelope.
Among the many reasons which can be invoked to in-

terpret the observed ¯uctuations, one is the ampli®ca-
tion of the divergence ¯uctuation by an O�N 2�
coe�cient (see Section 2), the non-regular meshing in

N of Er, and the overlapping of the successive grid
nodes around the maximum. A given number of sig-
ni®cant digits emerges from this behaviour on which

the forthcoming bench mark data are based. More-
over, with the ®nest grid used here (813 and 1113

nodes for Ra � 106 and 107, respectively), the relative
accuracy is within 0.02%. Repeating this procedure at

Ra � 103 and 104 with the four meshings indicated in
Tables 3 and 4, the corresponding relative error is eval-
uated at 0.002%. These data can then be considered as

worthy of being communicated as the previously pub-
lished 2D bench mark data, and as a contribution to
the numerical attempts for obtaining accurate 3D

¯ows.

4. Benchmark solutions

From all the previously presented data, the subset
which corresponds to the 3D ``benchmark solutions'' is
gathered in Table 9, for Ra values lying in the range

Table 6

Characteristic values, Ra � 106

Grid 513 613 713 813

umax 126.9468 127.0183 126.9724 126.9731

x ÿ0.3057 ÿ0.3057 ÿ0.3057 ÿ0.3057
y 0.2996 0.2997 0.2997 0.2997

z 0.4369 0.4365 0.4365 0.4365

vmax 25.5664 025.5664 25.5675 25.5650

x 0.4518 0.4518 0.4518 0.4518

y 0.3983 0.3983 0.3983 0.3983

z 0.4168 0.4169 0.4168 0.4168

Wmax 236.7254 236.7222 236.7255 236.7203

x 0.4603 0.4604 0.4604 0.4604

y 0.4301 0.4299 0.4299 0.4299

z 0.0265 0.0266 0.0265 0.0265

ump, max 123.483 123.4956 123.4750 123.4777

x ÿ0.3133 ÿ0.3133 ÿ0.3133 ÿ0.3133
z 0.4366 0.4366 0.4366 0.4366

Wmp, max 218.2468 218.2018 218.2506 218.2578

x 0.4638 0.4638 0.4638 0.4638

z 0.0353 0.0353 0.0353 0.0353

ump, max�0, 0, z� 67.9673 68.2109 68.2162 68.2198

z 0.3645 0.3535 0.3634 0.3536

Wmp, max�x, 0, 0� 216.9556 216.5737 216.5739 217.5702

x ÿ0.4649 ÿ0.4668 ÿ0.4669 ÿ0.4669
Nmp 8.8772 8.8771 8.8771 8.8771

N3D, W 8.6408 8.6407 8.6407 8.6407

d3D 0.0248 0.0123 0:0654� 10ÿ2 0:363� 10ÿ2

dmp 0.130 0.130 0.130 0.130
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(103, 107). The quoted data are purposely restricted to
their signi®cant digits. As already indicated in [2], all
these ¯ows are invariant by re¯ection about the mid-

plane �y � 0�: The measured relative symmetry rate is
better than 10ÿ9. For the sake of comparison, we have
collected the available published 3D results with ours

in Tables 10±13. In spite of the large variety of the
chosen numerical methods and meshings, these data
compare quite satisfactorily.

The goal of this paper is not to characterise the
3D structure of the ¯ows. Nonetheless, a noticeable
feature emerges from Table 9. Indeed, the mid-plane

contains the maxima of the velocity component u,
except for the Ra � 105 and 106 cases, which suggests
a non-monotonic evolution of the ¯ow structure
as the Ra number increases. This is con®rmed by

looking at the three relative heat transfer rates,
100� �Nu2D; W,ÿNu3D; W,�=Nu2D; W, 100� �Nu2D; W,
ÿNump�=Nu2D;W, and 100� �Nu3D;W,ÿNump�=Nu3D; W,

whose Ra dependencies are shown in Fig. 3. It is well
known since the thermally driven 3D cavity was ®rst
studied, Nu3D, W is less than Nu2D, W, at least until the

onset of unsteadiness, their relative departure being
maximum (9%) at about Ra � 104: With respect to

Table 7

Characteristic values, Ra � 107

Grid 513 613 713 813 913 1013 1113

umax 383.9579 383.1580 383.7974 383.7851 383.8998 383.8474 383.8357

x ÿ0.3777 ÿ0.3777 ÿ0.3777 ÿ0.3777 ÿ0.3777 ÿ0.3777 ÿ0.3777
y 0:16� 10ÿ9 0:36� 10ÿ10 0:36� 10ÿ10 0:37� 10ÿ10 0:37� 10ÿ10 0:37� 10ÿ10 0:37� 10ÿ10

z 0.4663 0.4663 0.4663 0.4663 0.4663 0.4663 0.4663

vmax 83.4998 83.3978 83.3878 83.4011 83.3883 83.3880 83.3885

x ÿ0.3316 ÿ0.3311 ÿ0.3311 ÿ0.3311 ÿ0.3311 ÿ0.3311 ÿ0.3311
y 0.4078 0.4083 0.4083 0.4083 0.4083 0.4083 0.4083

z 0.3953 0.3955 0.3955 0.3955 0.3955 0.3955 0.3955

Wmax 767.2357 768.2554 768.1611 768.0697 768.2578 768.1588 768.1393

x 0.4775 0.4775 0.4775 0.4775 0.4775 0.4775 0.4775

y 0.4599 0.4601 0.4601 0.4601 0.4601 0.4601 0.4601

z 0.0323 0.0323 0.0323 0.0323 0.0323 0.0323 0.0323

ump, max 383.9578 383.8139 383.7974 383.7650 383.8502 383.8474 383.8358

x ÿ0.3777 ÿ0.3777 ÿ0.3777 ÿ0.3777 ÿ0.3777 ÿ0.3777 ÿ0.3777
z 0.4663 0.4662 0.4662 0.4662 0.4662 0.4662 0.4662

Wmp, max 699.9631 699.9619 698.1931 698.4449 698.5730 698.5115 698.5260

x 0.4794 0.4794 0.4794 0.4794 0.4794 0.4794 0.4794

z 0:354� 10ÿ1 0:354� 10ÿ1 0:354� 10ÿ1 0:354� 10ÿ1 0:354� 10ÿ1 0:354� 10ÿ1 0:354� 10ÿ1

ump, max�0, 0, z� 153.5326 154.6107 154.8579 154.5689 154.6098 154.9197 154.9035

z 0.3853 0.3716 0.3716 0.3716 0.3716 0.3716 0.3716

Wmp, max�x, 0, 0� 686.5947 686.5947 686.5951 689.9350 692.8499 692.6914 692.6296

x ÿ0.4755 ÿ0.4755 ÿ0.4755 ÿ0.4812 ÿ0.4806 ÿ0.4806 ÿ0.4806
Nmp 16.5471 16.5477 16.5477 16.5477 16.5477 16.5477 16.5477

N3D, W 16.3422 16.3427 16.3427 16.3427 16.3427 16.3427 16.3427

d3D 0.160 0.101 0.057 0.032 0.015 0.0103 0.0069

dmp 0.207 0.206 0.207 0.206 0.206 0.206 0.206

Table 8

Maxima of the velocity components and the divergence, with

di�erent grids. 3D air ¯ows, Ra � 107

Grid umax vmax wmax d3D

213 377.2774 77.2720 777.4633 1.18

273 384.1558 83.2424 745.9628 0.749

313 384.7545 83.5144 767.9119 0.465

373 384.6206 83.6662 765.0922 0.388

413 384.2962 83.5652 768.1678 0.290

473 383.3162 83.4702 766.4531 0.210

513 383.9579 83.4998 767.2357 0.160

573 383.2419 83.3944 767.3424 0.126

613 383.1580 83.3978 768.2254 0.101

673 383.8643 83.3926 768.5642 0.072

713 383.7974 83.3878 768.1611 0.057

773 383.7872 83.4039 768.0607 0.041

813 383.7851 83.4011 768.0697 0.032

873 383.8072 83.3887 767.9471 0.019

913 383.8998 83.3883 768.2578 0.015

973 383.7989 83.3888 767.9627 0.012

1013 383.8474 83.3880 768.1588 0.103

1073 383.8167 83.3882 768.1035 0.0081

1113 383.8357 83.3885 768.1393 0.0069
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Nu2D, W, the mid-plane heat transfer increases, reaching

a maximum (at about Ra � 105� and then goes back to

get close to, but slightly larger than, Nu2D, W: So, the
2D approximation of the natural convection of air

overestimates the e�ective 3D heat transfer and sur-

prisingly, underestimates the mid-plane e�ective heat

transfer rate. While Nu2D, W gives the worst estimation

of Nu3D, W, it is the best for Nump: With respect to

Nump, the 3D heat transfer is always weaker. The mini-

mum it presents (by almost 10% at about Ra � 104�
indicates a strong y-dependency of Nu�y�: The last

data, at Ra � 3:3� 107, comes from the ultimate

steady ¯ow obtained before the onset of unsteadiness

reported in reference [2]. It has been added to the

Benchmark data in Fig. 3 in order to clarify the heat

transfer rate evolution at the boundary of the steady

Fig. 2. The maximum (pointwise) velocity divergence, and the relative error (de®ned in the text) in each maximum of the velocity

component, as a function of the number of nodes in each spatial direction.
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¯ows domain. Unsteadiness occurs before the 2D and
3D heat transfer rates get too close. The 3D structure
of these ¯ows therefore, deserves to be studied in

detail.

5. Conclusion

Accurate solutions to the di�erentially heated cubic

cavity problem have been presented, for values of Ra
in the range (103, 107), that is almost up to the end of
the steady laminar regime. From mesh re®nements and

extrapolations, the spatial resolution of the data is
believed to be better than 0.02% in relative spatial
error at the highest Rayleigh number. A non-mono-

tonous dependency on the Rayleigh number of the
¯ow structure emerges clearly from the quoted bench-
mark data.

Table 9

Benchmark solutions

Ra = 103 Ra = 104 Ra = 105 Ra = 106 Ra = 107

umax 3.543 16.719 43.90 126.97 383.8

x 0.0166 0.0196 ÿ0.1841 ÿ0.3057 ÿ0.3777
y 0:54� 10ÿ11 0:12� 10ÿ10 0.2203 0.2997 0:37� 10ÿ10

z 0.3169 0.3250 0.3873 0.4365 0.4663

vmax 0.173 2.156 9.69 25.56 83.38

x 0:14� 10ÿ10 0.3823 0.4175 0.4518 ÿ0.3311
y 0.2521 0.2826 0.3390 0.3983 0.4083

z 0:43� 10ÿ10 0.3447 0.3801 0.4168 0.3955

Wmax 3.544 18.983 71.06 236.72 768.1

x 0.3223 0.3834 0.4304 0.4604 0.4775

y 0:38� 10ÿ10 0.2308 0.3736 0.4299 0.4601

z 0.0032 0.0206 0.0060 0.0265 0.0323

ump, max 3.543 16.719 43.06 123.47 383.8

x 0.0166 0.0196 ÿ0.1865 ÿ0.3133 ÿ0.3777
z 0.3169 0.3250 0.3848 0.4366 0.4662

Wmp, max 3.544 18.682 65.43 218.25 698.5

x 0.3233 0.3870 0.4368 0.4638 0.4794

z 0.0032 0.0219 0.0100 0.0353 0.0354

ump, max�0, 0, z� 3.538 16.721 37.56 68.21 154.9

z 0.3151 0.3244 0.3535 0.3536 0.3716

Wmp, max�x, 0, 0� 3.541 18.616 65.21 217.57 692.6

x ÿ0.3147 ÿ0.3802 ÿ0.4330 ÿ0.4669 ÿ0.4806
Nmp 1.087 2.250 4.612 8.877 16.547

N3D, W 1.070 2.054 4.337 8.640 16.342

d3D 0:103� 10ÿ4 0:280� 10ÿ3 0:112� 10ÿ2 0:363� 10ÿ2 0.0069

dmp 0.286 0.541 0.421 0.130 0.206

Table 10

Compared Ra � 103 air ¯ow results

Ra = 103 Ra = 104

Ref. [13] Present work Ref. [13] Present work

Grid 323 813 323 813

ump, max�0, 0, z� 3.5012 3.538 16.962 16.721

z 0.3 0.3151 0.3167 0.3244

Wmp, max�x, 0, 0� 3.5172 3.541 18.976 18.616

x ÿ0.3333 ÿ0.3147 ÿ0.3833 ÿ0.3802
Nmp 1.105 1.087 2.302 2.250

N3D, W 1.085 1.070 2.100 2.054
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Table 11

Compared Ra � 105 3D air ¯ow results

Ra = 105

Ref. [13] Ref. [15] Ref. [9] Present work

Grid 623 273 253 813

umax 43.75 43.90

x ÿ0.171 ÿ0.1841
y 0.208 0.2203

z 0.382 0.3873

vmax 9.65 9.2 9.69

x 0.412 0.4175

y 0.332 0.3390

z 0.374 0.3801

Wmax 71.47 70.4 71.06

x 0.432 0.4304

y 0.372 0.3736

z 0.03 0:604� 10ÿ2

ump, max�0, 0, z� 39.116 37.56

z 0.3547 0.3535

Wmp, max�x, 0, 0� 65.841 65.21

x ÿ0.4353 ÿ0.4330
Nmp 4.646 4.613 4.612

N3D, W 4.361 4.337 4.309 4.337

Table 13

Compared Ra � 107 3D air ¯ow results

Ra = 107

Ref. [15] Ref. [9] Present work

Grid 273 33� 33� 29 813

umax 387.14 383.78

x ÿ0.377 ÿ0.3777
y 0 0:37� 10ÿ10

z 0.462 0.4663

vmax 80.28 58 83.40

x ÿ0.319 ÿ0.3316
y 0.416 0.4083

z 0.403 0.3953

Wmax 817.81 721 768.06

x 0.477 0.4775

y 0.459 0.4601

z 0.108 0.0323

ump, max�0, 0, z� 154.56

z 0.3716

Wmp,max�x, 0, 0� 686.93

x ÿ0.4755
Nmp 16.524 16.547

N3D, W 16.317 16.2 16.342

Table 12

Compared Ra � 106 3D air ¯ow results

Ra = 106

Ref. [13] Ref. [15] Ref. [9] Ref. [14] Present work

Grid 623 273 33� 33� 29 1203 813

umax 127.75 126.97

x ÿ0.307 ÿ0.3057
y 0.306 0.2997

z 0.434 0.4365

vmax 25.15 23.5 25.56

x 0.448 0.4518

y 0.394 0.3983

z 0.410 0.4168

Wmax 239.33 234.3 236.72

x 0.458 0.4604

y 0.430 0.4299

z 0.04 0.0265

ump, max�0, 0, z� 70.914 68.245 68.21

z 0.3557 0.3536

Wmp, max�x, 0, 0� 218.068 217.815 217.47

x ÿ0.4669 ÿ0.4669
Nmp 9.012 8.876 8.877

N3D, W 8.770 8.634 8.61 8.639 8.640
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